steepest descent method

steepest descent method
метод наискорейшего спуска (метод идентификации параметров различных систем)
метод наискорейшего спуска

Англо-русский словарь промышленной и научной лексики. 2014.

Смотреть что такое "steepest descent method" в других словарях:

• Method of steepest descent — For the optimization algorithm, see Gradient descent. In mathematics, the method of steepest descent or stationary phase method or saddle point method is an extension of Laplace s method for approximating an integral, where one deforms a contour… …   Wikipedia

• Conjugate gradient method — A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic,… …   Wikipedia

• Nonlinear conjugate gradient method — In numerical optimization, the nonlinear conjugate gradient method generalizes the conjugate gradient method to nonlinear optimization. For a quadratic function : The minimum of f is obtained when the gradient is 0: . Whereas linear conjugate… …   Wikipedia

• Gradient descent — For the analytical method called steepest descent see Method of steepest descent. Gradient descent is an optimization algorithm. To find a local minimum of a function using gradient descent, one takes steps proportional to the negative of the… …   Wikipedia

• Subgradient method — Subgradient methods are algorithms for solving convex optimization problems. Originally developed by Naum Z. Shor and others in the 1960s and 1970s, subgradient methods can be used with a non differentiable objective function. When the objective… …   Wikipedia

• Nelder–Mead method — Nelder–Mead simplex search over the Rosenbrock banana function (above) and Himmelblau s function (below) See simplex algorithm for Dantzig s algorithm for the problem of linear opti …   Wikipedia

• List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

• Méthode de Laplace — En mathématiques, la méthode de Laplace, due à Pierre Simon de Laplace, est une méthode pour l évaluation numérique d intégrales de la forme : où f est une fonction deux fois dérivable, M est un grand nombre réel et les bornes a et b peuvent …   Wikipédia en Français

• Methode de Laplace — Méthode de Laplace En mathématiques, la méthode de Laplace, due à Pierre Simon Laplace, est une méthode pour l évaluation numérique d intégrales de la forme : où f est une fonction deux fois dérivable, M est un grand nombre réel et les… …   Wikipédia en Français

• Méthode De Laplace — En mathématiques, la méthode de Laplace, due à Pierre Simon Laplace, est une méthode pour l évaluation numérique d intégrales de la forme : où f est une fonction deux fois dérivable, M est un grand nombre réel et les bornes a et b peuvent… …   Wikipédia en Français

• Méthode de laplace — En mathématiques, la méthode de Laplace, due à Pierre Simon Laplace, est une méthode pour l évaluation numérique d intégrales de la forme : où f est une fonction deux fois dérivable, M est un grand nombre réel et les bornes a et b peuvent… …   Wikipédia en Français

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»